Left-inversion of combinatorial sums
نویسندگان
چکیده
The inversion of combinatorial sums is a fundamental problem in algebraic combinatorics. Some combinatorial sums, such as a n = P k d n;k b k , can not be inverted in terms of the orthogonality relation because the innnite, lower triangular array P = fd n;k g's diagonal elements are equal to zero (except d 0;0). Despite this, we can nd a left-inverse P such that P P = I and therefore are able to left-invert the original combinatorial sum, and thus obtain b n = P k d n;k a k. R esum e L'inversion des sommes combinatoires est un probl eme fondamental dans l'alg ebre combina-toire. Certaines sommes combinatoires, par exemple a n = P k d n;k b k , ne peuvent pas ^ etre inverties selon la r elation d'orthogonalit e, parce que les el ements sur la diagonale de la matrice triangulaire inf erieure P = fd n;k g sont nuls (sauf d 0;0). Malgr e cela, on peut bien souvent d eenir une matrice left-inverse P telle que P P = I et, par cons equent , on peut left-invertir la somme combinatoire d'origine, en obtenant b n = P k d n;k a k .
منابع مشابه
Combinatorial sums and implicit Riordan arrays
In this paper we present the theory of implicit Riordan arrays, that is, Riordan arrays which require the application of the Lagrange Inversion Formula to be dealt with. We show several examples in which our approach gives explicit results, both in finding closed expressions for sums and, especially, in solving classes of combinatorial sum inversions.
متن کاملLagrange Inversion: when and how
The aim of the present paper is to show how the Lagrange Inversion Formula (LIF) can be applied in a straight-forward way i) to find the generating function of many combinatorial sequences, ii) to extract the coefficients of a formal power series, iii) to compute combinatorial sums, and iv) to perform the inversion of combinatorial identities. Particular forms of the LIF are studied, in order t...
متن کاملRefined Inversion Statistics on Permutations
We introduce and study new refinements of inversion statistics for permutations, such as k-step inversions, (the number of inversions with fixed position differences) and non-inversion sums (the sum of the differences of positions of the non-inversions of a permutation). We also provide a distribution function for non-inversion sums, a distribution function for k-step inversions that relates to...
متن کاملA COMBINATORIAL INTERPRETATION OF GUO AND ZENG’S q-FAULHABER COEFFICIENTS
Recently, Guo and Zeng discovered q-analogues of Faulhaber's formulas for the sums of powers. They left it as an open problem to extend the combinatorial interpretation of Faulhaber's formulas as given by Gessel and Viennot to the q case. In this note we will provide such an interpretation.
متن کاملRegister Allocation for Unary-Binary Trees
We study the number of registers required for evaluating arithmetic expressions formed with any set of unary and binary operators. Our approach consists in a singularity analysis of intervening generating functions combined with a use of (complex) Mellin inversion. We illustrate it first by rederiving the known results about binary trees and then extend it to the fully general case of unaj-bina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 180 شماره
صفحات -
تاریخ انتشار 1998